
How To Use Raspberry Pi
Secure Boot

Raspberry Pi Ltd

2023-07-05: githash: b3a30d1-clean

Colophon
© 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND)

licence.

build-date: 2023-07-05

build-version: githash: b3a30d1-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of

the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties expressed

in them.

How To Use Raspberry Pi Secure Boot

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Document version history

Release Date Description

1.0 14 April 2021 Initial release

1.1 24 June 2021 Update to latest schemes

1.2 18 October 2021 Remove NDA requirements

1.3 22 October 2021 Remove USBBOOT branch note as

now on master

1.4 10 November 2021 Several corrections, additional

workflow description

1.5 14 February 2021 Correct the rpiboot path

1.6 17 January 2022 Copy edited

1.7 27 April 2022 Public release

1.8 9 August 2022 Add verification section; add turning

off signed boot section; various

improvements to descriptions;

removed some out-of-date text

1.9 14 June 2023 Removed deprecated boot image

creation instructions and provided a

link to the current instructions in the

usbboot repository

Scope of document

This document applies to the following Raspberry Pi products:

Pi 0 Pi 1 Pi 2 Pi 3 Pi 4 Pi 400 CM1 CM3 CM4 Pico

0 W H A B A B B All All All All All All

* * *

How To Use Raspberry Pi Secure Boot

Document version history 2

Introduction
This white paper describes how to implement secure boot on devices based on Raspberry Pi 4. For an overview of the

secure boot implementation, please see the Raspberry Pi 4 Boot Security white paper.

This white paper assumes that the Raspberry Pi running RPIBOOT is running Raspberry Pi OS (Linux), Bullseye version or

later, and is fully up to date with the latest firmware and kernels. The secure boot system is intended for use with

buildroot (or similar)-based OS images; using it with Raspberry Pi OS is not recommended or supported.

How To Use Raspberry Pi Secure Boot

Introduction 3

Guide to using signed/secure boot
This quick start guide describes how to use the Raspberry Pi Ltd supplied scripts to create a signed and secure boot

system. These scripts are designed with the aim of making the entire process very easy to carry out. Note, however, that

some of the operations involved in making a Raspberry Pi boot-secure are irreversible, so you should take particular care

when using these instructions. This document will warn you whenever irreversible operations are about to be carried out.

We recommend that you read this whitepaper in conjunction with the online instructions at https://github.com/

raspberrypi/usbboot#secure-boot. Raspberry Pi Ltd also advises checking the GitHub usbboot repository to ensure you

have the latest instructions and bug fixes.

Prerequisites

It is assumed that the user is using a separate device, such as another Raspberry Pi, or a laptop or similar running Linux,

to do all the file system collation and encryption.

Use the following command to install essential packages on this device:

sudo apt install pkg-config build-essential

The scripts use the Python cryptographic pycryptodomex support module, which can be installed as follows:

python3 -m pip install pycryptodomex

or

pip install pycryptodomex

Then you will also need to clone the usbboot repository, which contains various tools, bootloaders, and recovery files:

git clone https://github.com/raspberrypi/usbboot/

To build the usbboot application for Raspberry Pi OS, Ubuntu, or similar:

cd usbboot
sudo apt install libusb-1.0-0-dev
make

This document assumes, unless stated otherwise, that all commands are executed from the usbboot folder cloned above.

Secure boot requires the latest firmware (September 2021). This is already present in the Bullseye release of Raspberry Pi

OS, but can also be downloaded from the firmware repository on GitHub. The required files are in the boot folder.

How To Use Raspberry Pi Secure Boot

Prerequisites 4

https://github.com/raspberrypi/usbboot#secure-boot
https://github.com/raspberrypi/usbboot#secure-boot

git clone --depth 1 --branch stable https://github.com/raspberrypi/firmware

 NOTE

To help with debugging any issues, it can be very useful to have a Universal Serial Bus (USB) UART (universal

asynchronous receiver/transmitter) adapter connected when using rpiboot.

Creating an RSA key pair

An RSA (Rivest–Shamir–Adleman) key pair is required to sign the electronically erasable programmable read-only

memory (EEPROM) and the boot image. To create a 2048-bit RSA private key in PEM (Privacy-Enhanced Mail) format:

openssl genrsa 2048 > private.pem

You may also need a public key, which can be generated from the private key with this command:

openssl rsa -in private.pem -out public.pem -pubout -outform PEM

 WARNING

Keep these keys secure. If a key is lost, then any Raspberry Pi that has been set to use that key can no longer be

updated. If a key is stolen, third parties will be able to sign their images with it; this will compromise security on any

device using that key.

Creating a signed boot image

The entire process for creating a signed boot image is documented on the Raspberry Pi Ltd GitHub site:

https://github.com/raspberrypi/usbboot#secure-boot

A minimal example can be found here:

https://github.com/raspberrypi/usbboot/blob/master/secure-boot-example/README.md

Once the image has been created and copied to the boot partition of the Raspberry Pi, you can secure the system.

Update the EEPROM using usbboot

We now need to update the EEPROM on the device with a new signed bootloader, and add any configuration changes

required.

The usbboot repository contains a subfolder called secure-boot-recovery. Although frequently used to recover a system

with a bad bootloader, it is also used for customising the bootloader, and for signing it for use with secure boot.

In the folder is a file, boot.conf, that contains all the required configuration parameters.

The most important item for secure boot is the SIGNED_BOOT option. When a bootloader has this set, it will look for a

boot.sig in the boot folder and compare that against the bootloader’s inbuilt key (see the next section); if they match, it

will load boot.img into a ramdisk and use the contents to continue the boot process.

How To Use Raspberry Pi Secure Boot

Creating an RSA key pair 5

https://github.com/raspberrypi/usbboot#secure-boot
https://github.com/raspberrypi/usbboot/blob/master/secure-boot-example/README.md

Select signed-boot mode in the EEPROM. This can be used during development
to test the signed boot image. Once secure boot is enabled via OTP this setting
has no effect, i.e. it is always 1.
SIGNED_BOOT=1

This next command will apply the configuration to the bootloader, and sign it with the specified key. By default the script

will use the bootloader file pieeprom.original.bin and the configuration file boot.conf from the current working folder,

although both of these can be changed on the command line using -c and -i respectively.

 NOTE

Use ../tools/update-pieeprom.sh -h to display help on all the available options.

cd secure-boot-recovery
../tools/update-pieeprom.sh -k ../private.pem

We now have a configured and signed bootloader that we can transfer to the client device using rpiboot. So, set up your

device to enable nRPIBOOT, remove EEPROM write protection (WP low), and then run the following command:

../rpiboot -d .

 NOTE

rpiboot with the -d option will boot the attached device using the boot files in the specified folder, rather than the

bootloader from the eMMC. In this case it is using the current folder (.).

Power up your device, which should now update its bootloader to the newly signed image and then boot from the

boot.img file.

At this stage the system is not fully secure, as it is still possible, given physical access, to boot up and replace the

bootloader with an unsigned version by using rpiboot again. The final stage in the security process is to make changes to

the OTP that will ensure that only a signed bootloader can boot the system.

Turning off signed booting

If you find the boot.img file is not booting correctly, it is still possible to replace the signed bootloader with an unsigned

version, because at this stage the OTP has not yet been programmed.

The easiest way of doing this is to find a spare SD card and use Raspberry Pi Imager to create a recovery SD card. Run

Imager and select Choose OS, then Misc Utility Images, then Bootloader, then one of the three different boot options;

this will usually be SD Card Boot. Create the SD card, then insert it into the device and reboot. This will reprogram the

eMMC bootloader to factory defaults.

How To Use Raspberry Pi Secure Boot

Creating a signed boot image 6

 NOTE

If you enabled SIGNED_BOOT=1 from Raspberry Pi OS but the system fails to boot, then a file, pieeprom.upd, will

remain on the SD card, as it is only deleted on a successful boot. Consequently, the bootloader will set up signed boot

mode after you swap SD cards back. You will need to delete the file from the boot folder to ensure that the system

does not keep setting the SIGNED_BOOT flag.

Enable secure boot mode

 WARNING

Once this stage has been completed, the device is locked to images with the specified key. If you lose the key and are

therefore unable to sign images with it, then the device is 'bricked', and cannot be recovered.

After verifying that the signed boot configuration is working as expected, the hash of the public key can optionally be

written to the one-time programmable (OTP) memory block to move the system to full secure boot.

The current process is to edit usbboot/secure-boot-recovery/config.txt and add one or both of the following entries:

• program_pubkey If 1, write the hash of the customer’s public key to OTP. The system will now be in signed boot

mode. This can be used for final testing, as the system can still be recovered to a non-secure state by loading an old

bootloader that does not support secure boot.

• revoke_devkey If 1, revoke the ROM bootloader development key in order to require secure boot mode and prevent

downgrades to bootloader versions that do not support secure boot.

Now run the update while still in the secure-boot-recovery folder:

../rpiboot -d .

recovery.bin validates that the public key in the EEPROM verifies the signature of the embedded bootconf.txt file and

that there are no conflicts with existing OTP values. If everything is in order then the OTP bits containing the key are

written. This is a one-time-only process and cannot be undone.

The Raspberry Pi system on a chip is then locked into signed boot mode forever, and will only accept bootable images

and EEPROMs where the hash of the public key matches the hash in OTP:

• The bootloader will only load OS images signed with the customer’s private key.

• The EEPROM configuration file must be signed with the customer’s private key.

• It is not possible to install an old version of the bootloader that does not support secure boot.

• It is not possible to use a different private key to sign the OS images.

Using the Mass Storage Gadget on a secure boot system

If secure boot is enabled, the bootloader will refuse to load any images that are not signed. This includes the usbboot
mass storage device (MSD) image, so in order to use it, the usbboot image will need to be signed.

This can easily be done using the tools provided, as follows:

cd secure-boot-msd
../tools/rpi-eeprom-digest -i boot.img -o boot.sig -k ../private.pem

How To Use Raspberry Pi Secure Boot

Using the Mass Storage Gadget on a secure boot system 7

Then use the standard rpiboot to run:

../rpiboot -d .

Note that the requirement to have a signed usbboot to get into MSD mode is protection against arbitrary access via a USB

cable.

 WARNING

You should keep any signed usbboot securely stored, as a third party could use it to recover data from an otherwise

secure system.

How To Use Raspberry Pi Secure Boot

Using the Mass Storage Gadget on a secure boot system 8

	How To Use Raspberry Pi Secure Boot
	Colophon
	Legal Disclaimer Notice
	Document version history
	Scope of document

	Introduction
	Guide to using signed/secure boot
	Prerequisites
	Creating an RSA key pair
	Creating a signed boot image
	Update the EEPROM using usbboot
	Turning off signed booting

	Enable secure boot mode

	Using the Mass Storage Gadget on a secure boot system

