
Using a DPI Display on the
Raspberry Pi

Raspberry Pi Ltd

2022-04-29: githash: ba7441c-clean

Colophon
© 2020-2022 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).

build-date: 2022-04-29

build-version: githash: ba7441c-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of

the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties expressed

in them.

Using a DPI Display on the Raspberry Pi

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Document version history

Release Date Description

1.0 10 January 2022 Initial release

1.1 27 April 2022 Copy edit, public release

Scope of document

This document applies to the following {pi=prefix} products:

Pi 0 Pi 1 Pi 2 Pi 3 Pi 4 Pi 400 CM 1 CM 3 CM 4 Pico

0 W H A B A B B All All All All All All

* * * * * * * * * * * *

Using a DPI Display on the Raspberry Pi

Document version history 2

Introduction
Display Parallel Interface (DPI) displays can be connected to Raspberry Pi devices via the 40-pin general-purpose

input/output (GPIO) connector as an alternative to using the dedicated Display Serial Interface (DSI) or High-Definition

Multimedia Interface (HDMI) ports. Many third-party DPI displays have been made available to take advantage of this. The

Buster (and earlier) Raspberry Pi operating system (OS) and the legacy display stack used Raspberry Pi-specific

parameters in config.txt to configure DPI displays. With the move to Bullseye and its use of the Kernel Mode Setting

(KMS) graphics driver by default, these config.txt entries are no longer relevant as all control of the display pipeline has

shifted to the Linux kernel.

This whitepaper assumes that the Raspberry Pi is running the Raspberry Pi OS (Linux), and is fully up to date with the

latest firmware and kernels.

Terminology

DPI: Display Parallel interface. A specification for interfacing with display devices, typically liquid crystal display (LCD)

panels, that are driven through a set of parallel data lines.

Legacy graphics stack: A graphics stack wholly implemented in the VideoCore firmware blob with a shim application

programming interface (API) exposed to the kernel. This is what has been used on the majority of Raspberry Pi Ltd’s Pi

devices since launch, but is gradually being replaced by KMS/DRM.

vc4-kms-v3d: The full KMS driver for Raspberry Pi devices. Controls the entire display process, including talking to the

hardware directly with no firmware interaction.

FKMS: Fake Kernel Mode Setting. While the firmware still controls the low-level hardware (for example the HDMI ports,

DSI, DPI, etc.), standard Linux libraries are used in the kernel itself.

KMS: Kernel Mode Setting API.

DRM: Direct Rendering Manager, a subsystem of the Linux kernel used to communicate with graphics processing units

(GPUs). Used in partnership with FKMS and KMS.

SoC: System on a chip. The main processor on Raspberry Pi boards, which varies according to model.

DT: Device Tree, a mechanism for defining the hardware characteristics of a device.

Using a DPI Display on the Raspberry Pi

Terminology 3

Using DPI displays

Simple panels

For simple DPI panels that need no configuration, moving to KMS is relatively straightforward.

The new vc4-kms-dpi-generic overlay allows the properties and timings of the panel to be specified with dtoverlay
/dtparam lines in config.txt. As the help text describes, it has a number of parameters:

Params: clock-frequency Display clock frequency (Hz)
 hactive Horizontal active pixels
 hfp Horizontal front porch
 hsync Horizontal sync pulse width
 hbp Horizontal back porch
 vactive Vertical active lines
 vfp Vertical front porch
 vsync Vertical sync pulse width
 vbp Vertical back porch
 hsync-invert Horizontal sync active low
 vsync-invert Vertical sync active low
 de-invert Data Enable active low
 pixclk-invert Negative edge pixel clock
 width-mm Define the screen width in mm
 height-mm Define the screen height in mm
 rgb565 Change to RGB565 output on GPIOs 0-19
 rgb666-padhi Change to RGB666 output on GPIOs 0-9, 12-17, and
 20-25
 rgb888 Change to RGB888 output on GPIOs 0-27
 bus-format Override the bus format for a MEDIA_BUS_FMT_*
 value. NB also overridden by rgbXXX overrides.
 backlight-gpio Defines a GPIO to be used for backlight control
 (default of none).

The dpi_timings= line from the legacy config.txt system has the following format:

dpi_timings=<hactive> <h_sync_polarity> <hfp> <hsync> <hbp> <vactive>
<v_sync_polarity> <vfp> <vsync> <vbp> <n/a> <n/a> <n/a> <n/a> <n/a> <clock-
frequency> <n/a>

Using the timings example of the Pimoroni HyperPixel4, the old config.txt line

dpi_timings=480 0 10 16 59 800 0 15 113 15 0 0 0 60 0 32000000 6

converts to

Using a DPI Display on the Raspberry Pi

Simple panels 4

dtoverlay=vc4-kms-dpi-generic
dtparam=hactive=480,hfp=10,hsync=16,hbp=59
dtparam=vactive=800,vfp=15,vsync=113,vbp=15
dtparam=clock-frequency=32000000

The legacy dpi_output_format line is a bitmasked field to configure various properties of the DPI block, as documented in

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#controlling-output-format.

The bits from that field map to dtparam settings as follows:

Bits Description Options Default KMS support

0–3 Output format rgb565, rgb666, rgb666-padhi, rgb888

(not all the options are mapped)

RGB666

(old mode 5)

partial

4–7 RGB order Hex value, set in conjunction with

output format: 0x1013 for bgr888,

0x101e for bgr666-padhi, 0x101f for

bgr666; other orderings are not

supported

RGB partial

8 Output enable mode no

9 Invert pixel clock pixclk-invert off yes

12 HSync disable no

13 VSync disable no

14 Output enable disable no

16 HSync polarity hsync-invert off yes

17 VSync polarity vsync-invert off yes

18 Output enable invert de-invert off yes

20 HSync phase no

21 VSync phase no

The config.txt entry

dpi_output_format=0x7f216

as used on the HyperPixel4 can be translated to the additional dtparam lines as follows:

dtparam=hsync-invert,vsync-invert,pixclk-invert
dtparam=rgb666-padhi

Note: This use of phase with invert actually counteract each other.

The dtparams parameters width-mm and height-mm allow the setting of the physical size of the display advertised to

userspace.

The final parameter of note is the backlight control GPIO. The dtoverlay option backlight-gpio allows a specific GPIO to

be assigned to any backlight control implemented on the display. This defaults to none.

Using a DPI Display on the Raspberry Pi

Simple panels 5

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#controlling-output-format

More advanced timing

Where the vc4-kms-dpi-generic overlay does not allow for all options of timings and syncs, and your panel requires no

initialisation sequence, it is possible to add a customer panel timing definition to the panel-simple.c driver

(https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/panel/panel-simple.c). This provides access to all the

extra options that are not supported by the generic overlay.

The definition requires:

• A struct drm_display_mode to define the timings. The flags field can express the polarity of the HSync and VSync

pulses if needed, or DRM_MODE_FLAG_CSYNC with DRM_MODE_FLAG_PCSYNC or DRM_MODE_FLAG_NCSYNC can be used for

composite sync options (this used to be 'output enable mode' in dpi_output_format).

• A struct panel_desc to define the panel size, link to the mode, and specify any additional flags required.

• An entry in platform_of_match to link a compatible string to the struct panel_desc.

An overlay can then reference the new compatible string rather than requiring the timings to be specified in the device

tree.

If adding compatible strings, follow the basic guidance of making them 'vendor,device', where vendor should come from

https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/vendor-prefixes.yaml. Ideally, the

device tree binding documentation should also be updated.

Panel-specific drivers

With more complex panels which need to be sent initialisation commands, the correct solution is to write a panel-specific

driver and configure it with a specific dtoverlay.

This is what is actually required for the HyperPixel4 as it needs a set of Serial Peripheral Interface (SPI) commands to

initialise it. That is further complicated by the fact that the panel SPI lines are not wired directly to one of the hardware SPI

controllers, so it needs to use the spi-gpio module to bit-bash SPI on a generic GPIO. This has been done with the panel

driver and the dtoverlay (https://github.com/6by9/linux/blob/rpi-5.15.y-hyperpixel4/arch/arm/boot/dts/overlays/vc4-

kms-dpi-hyperpixel4-overlay.dts).

As this is a dedicated panel driver, the timing configuration is in the driver instead of device tree — see the function

ili9806e_480x800_mode for more details.

Panel drivers have four main functions:

• prepare: Used to power up and configure. Video is not enabled at this point.

• enable: Enable the display. Video is enabled.

• disable: Disable the display. Video is still running.

• unprepare: Power down the display. Video is disabled before this call.

As can be seen in the panel-ilitek-ili9806e driver, prepare sends all the SPI commands to configure the panel mode

(taken from their older configuration script), and enable sends the DISPLAY_ON command. Conversely, disable sends the

DISPLAY_OFF command, and unprepare puts the panel to sleep.

A backlight is defined in the overlay using the gpio-backlight driver, and then associated with the panel driver. Doing this

means that the DRM framework handles enabling and disabling of the backlight rather than the panel driver having to do

it. gpio-backlight allows a GPIO to turn a backlight on/off. There is also pwm-backlight which allows the use of a pulse-

width modulation (PWM) output to give finer control of backlight intensity — see cutiepi-panel-overlay.dts for an

example of using this.

Using a DPI Display on the Raspberry Pi

More advanced timing 6

https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/panel/panel-simple.c
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/vendor-prefixes.yaml
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/display/panel/panel-simple.yaml
https://github.com/6by9/linux/blob/rpi-5.15.y-hyperpixel4/drivers/gpu/drm/panel/panel-ilitek-ili9806e.c
https://github.com/6by9/linux/blob/rpi-5.15.y-hyperpixel4/drivers/gpu/drm/panel/panel-ilitek-ili9806e.c
https://github.com/6by9/linux/blob/rpi-5.15.y-hyperpixel4/arch/arm/boot/dts/overlays/vc4-kms-dpi-hyperpixel4-overlay.dts
https://github.com/6by9/linux/blob/rpi-5.15.y-hyperpixel4/arch/arm/boot/dts/overlays/vc4-kms-dpi-hyperpixel4-overlay.dts
https://github.com/pimoroni/hyperpixel4/blob/pi4-i2c-fix/dist/hyperpixel4-init

	Using a DPI Display on the Raspberry Pi
	Colophon
	Legal Disclaimer Notice
	Document version history
	Scope of document

	Introduction
	Terminology

	Using DPI displays
	Simple panels
	More advanced timing
	Panel-specific drivers

