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Introduction
This whitepaper is an introduction to writing a Display Serial Interface (DSI) driver for liquid crystal display (LCD) panels

running under the Kernel Mode Setting (KMS) graphics system. It does not cover DSI drivers for the legacy graphics

system, or Fake Kernel Mode Setting (FKMS).

It assumes that the Raspberry Pi is running the Raspberry Pi operating system (OS; Linux), and is fully up to date with the

latest firmware and kernels.

Terminology

DSI: A specification for interfacing with display devices, typically LCD panels.

Legacy graphics stack: A graphics stack wholly implemented in the VideoCore firmware blob with a shim application

programming interface (API) exposed to the kernel. This is what has been used on the majority of Raspberry Pi Ltd’s Pi

devices since launch, but has been replaced by KMS/DRM in Raspberry Pi OS Bullseye and later OSs.

vc4-kms-v3d: The full KMS driver for Raspberry Pi devices. Controls the entire display process, including talking to the

hardware directly with no firmware interaction.

FKMS: While the firmware still controls the low-level hardware (for example the High-Definition Multimedia Interface

(HDMI) ports, DSI, etc.), standard Linux libraries are used in the kernel itself.

KMS: Kernel Mode Setting API.

DRM: Direct Rendering Manager, a subsystem of the Linux kernel used to communicate with graphics processing units

(GPUs). Used in partnership with FKMS and KMS.

SoC: System on a chip. The main processor on Raspberry Pi boards, which varies according to model.

MIPI: Mobile Industry Processor Interface.

MIPI Alliance: The standards body for MIPI protocols.

D-PHY: MIPI physical/electrical standard for DSI (and Camera Serial Interface 2). The C-PHY and M-PHY standards are not

supported on Raspberry Pi devices.

DT: Device Tree, a mechanism for defining the hardware characteristics of a device.

Prerequisites

In order to develop a DSI driver there are several requirements:

• A Raspberry Pi (preferably 4B 4GB or 8GB if you are working and compiling on the Pi itself). Ensure that you have the

line dtoverlay=vc4-kms-v3d in config.txt so you are using the KMS driver.

• A buildable kernel tree. The Raspberry Pi kernel tree can be found at https://www.github.com/raspberrypi/linux.

• A datasheet for the LCD panel showing the resolution and timings. The register sets from the manufacturer for panel

initialisation are also very useful, sometimes critical, here.
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Concepts

DSI

DSI specifies a high-speed point-to-point serial bus that has a clock lane plus one to four data lanes.

The DSI and D-PHY specifications are maintained by the MIPI Alliance.

A number of introductions to these standards are available, so no detail will be given here on the electrical level or low-

level protocol — please refer to the specifications.

The SoCs used on Raspberry Pi devices implement two DSI interfaces. On Raspberry Pi 1 to Raspberry Pi 4, only one port,

the 4-lane DSI1, is exposed. On the CM devices up to the Raspberry Pi CM4, two ports are exposed, the 4-lane DSI1 and

the 2-lane DSI0. The devices implement DSI 1.0 over D-PHY 1.01.

On the Raspberry Pi 5, both ports have moved from the SoC to the Raspberry Pi RP1 device and are exposed. Both DSI0

and DSI1 are 4-lane and implement DSI 1.1.

DSI links normally operate in Low Power (LP) mode or High Speed (HS) mode. LP mode is typically around 10MHz, which

is not fast enough to carry video. It is frequently used for display commands and configuration (LP signalling). Displays

can accept video in either Command or Video modes. Command mode is relatively rare, and generally requires the display

to have a full frame buffer. This mode is currently not supported by the Raspberry Pi Ltd drivers. There is also an Ultra-

Low-Power State (ULPS), but this is rarely used.

The lowest speed at which HS mode runs depends on the display bit rate (size and colour depth) and the number of lanes

in use. DSI supports a burst mode which runs HS mode faster than normally required, so the lane(s) can drop back to an

LP state during the blanking periods to save power.

Display configuration has two parts: the Display Command Set (DCS), which contains a standard set of commands, and

the Manufacturer Command Set (MCS), which contains display-specific commands. Commands can be sent in either LP

or HS modes, although some devices will have restrictions on which modes are supported.

In general, there is very little commonality between displays, and the DCS is insufficient to set them up ready for use,

which means that manufacturer-specific commands are almost always needed when trying to program a display. This

means that, on the whole, each display requires its own driver, or at the very least its own set of register setup

information.

DRM

Refer to the Linux kernel documentation for the latest (and definitive) documentation of DRM.

A number of online introductions are available to give an overview, for example:

• https://bootlin.com/pub/conferences/2017/kr/ripard-drm/ripard-drm.pdf

• https://events.static.linuxfound.org/sites/events/files/slides/brezillon-drm-kms.pdf

DRM splits the display composition pipe into planes that are composed and fed into a CRTC (cathode-ray tube controller)

to implement display timings. That feeds an encoder, e.g. HDMI, Display Parallel Interface (DPI), DSI, or low-voltage

differential signalling (LVDS), potentially through one or more bridges to either a connector or a panel.

• Plane: A memory object from which a scanout engine (a CRTC) is fed.

• CRTC: Reads the pixel data and generates the video mode timing.

• Encoder: Encodes the video mode timings to something suitable for the connector or panel.

• Connector: Represents where the display controller sends out the signal, for example, an HDMI connector.
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• Panel: An alternative to a connector for display devices attached directly to the device rather than via a connector.

Conceptually very similar to a connector.

• Bridge: A device that converts one form of video signal to another.

All display pipelines will have planes and CRTCs as standard. Encoders, bridges, connectors, and panels are specific to the

computing device and the display device.

 NOTE

The encoder is a partially deprecated concept, but as it was exposed via a userspace API it has to be retained for

backward compatibility. When not used, the CRTC will feed a connector or panel, possibly via a bridge.

Drivers for DRM/KMS normally live under /drivers/gpu/drm/ in the kernel source tree, or under /drivers/staging for

those that have not yet been fully accepted.

DRM pipeline on Raspberry Pi devices

The following diagram shows a generic DRM pipeline on a Raspberry Pi device.

The next diagram shows the specific pipeline used for the Raspberry Pi 7" LCD panel.
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DSI under DRM/KMS
When adding a DSI display, you will need to configure bridge drivers, if present, and panels. If drivers are not available for

the panels or bridge, then they will need to be written.

In common with the majority of Linux implementations, one driver should do one thing and do it well. Where a panel is

connected via a generic bridge chip (e.g. TI SN65DSI83 DSI to LVDS, or Toshiba TC358762 DSI to DPI), then the bridge

chip is normally expected to have a driver, and it should not be integrated into the panel driver.

Most panels connected via bridges can be configured by extending the panel-simple driver. If the panel is fully integrated

and takes DSI directly in, then there are example panel drivers such as Ilitek ILI9881C and Sitronix ST7701.

All configuration happens via the DT. The base DT will already define the dsi0 and dsi1 interfaces, but they will be

disabled. The Raspberry Pi Ltd kernel tree uses DT overlays to extend the base DT. This is different from mainline Linux

which generally expects the base DT to be a complete description of the hardware. The details of DT are covered in other

documentation, so will not be duplicated here.

There are already dtoverlays merged into the Raspberry Pi Ltd kernel tree for the JDI LT070ME05000 1200 × 1920 native

DSI panel, the Raspberry Pi 7" panel, which uses a Toshiba TC358762 DSI to DPI bridge chip, and the TI SN65DSI83 DSI to

LVDS bridge.

All three are drivers that are merged into the mainline Linux kernel, and therefore the DT bindings documentation will be

found in the mainline tree.

Note that regulator and reset general-purpose input/output (GPIO) control is generally abstracted out from any driver, as

then it can be used on a variety of hardware with only configuration changes.

DSI device drivers

Please check to see if a driver for your panel/bridge has been sent to the dri-devel kernel mailing list before starting on a

new one from scratch. Many drivers get started but not cleaned up for the final merge, and those are generally better

starting points than basing a new driver on something else. Likewise, the Raspberry Pi Ltd kernel tree generally sticks to

the Long Term Stable (LTS) kernel releases, so there may be drivers that have been merged in more recent kernel versions

that can be used as a starting point.

Bridges and panels have slightly different APIs, but they support the same concepts.

For a bridge, please implement the DRM atomic API calls, not the legacy non-atomic ones. That means using the

following functions in struct drm_bridge_funcs:

• atomic_pre_enable

• atomic_enable

• atomic_disable

• atomic_post_disable

The SN65DSI83 driver is a good example of a bridge driver using the atomic API.

With the atomic APIs the mode_set call is deprecated, and the bridge should retrieve the mode from the crtc_state when

required; see sn65dsi83_atomic_enable.

DRM calls all the *_pre_enable calls first, starting at the furthest from the encoder (generally the panel or connector) and

working backwards. This is generally the correct call to enable the regulators, clear any reset GPIOs, and generally

configure the bridge. Configuration is normally done with either inter-integrated circuit (I2C) commands or using the

mipi_dsi_* commands or mipi_dsi_generic_wri_*te, defined in the kernel tree in drm_mipi_dsi.h.

Once back to the encoder, it enables the CRTC and encoder to start video down the pipeline.

It then calls the *_enable calls down the chain from the encoder to the panel/connector. This is normally used to enable
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backlights and similar.

When being disabled the reverse happens: *_disable functions are called first from the panel/connector to the encoder,

video is disabled, and then *_post_disable are called from the encoder to the panel/connector.

The same principles hold for a panel, but the calls are prepare/enable and disable/unprepare in struct
drm_panel_funcs.

The number of lanes and various other mode flags are configured via fields in the struct mipi_dsi_device given to the

panel/bridge probe function.

DSI supports several virtual channels on a single link. While the SoC has some support for this, it is rarely used on

displays. It can be configured via the channel field in struct mipi_dsi_device and struct mipi_dsi_msg.

Panel timings

The panel, via its driver, specifies the timings it desires, and this is passed down the chain.

The Raspberry Pi Ltd DSI block on the Raspberry Pi 1 to Raspberry Pi 4 is driven off an integer divider from a fixed phase-

locked loop (PLL), and can therefore only achieve specific link frequencies, meaning that DSI’s burst mode is used under

most conditions. The function vc4_dsi_bridge_mode_fixup can be used to increase the horizontal front porch to account

for the increased pixel clocks while keeping the delay between sync pulse and image data, and the overall line time, the

same. This means the link frequency used may not be the same as that requested.

On the Raspberry Pi 5, the DSI block is part of the Raspberry Pi RP1 device and is allocated its own PLL, which means it is

capable of any link frequency. This means that the link frequency will be the same as that requested.

 NOTE

When moving from using a display on the Raspberry Pi 4 to a Raspberry Pi 5, this change in link frequency handling

may cause problems if the driver inadvertently relies on this adjustment. You may need to correct the link frequency

and porch values appropriately.

Implementing a DSI Driver on the Raspberry Pi

Panel timings 7



Further reading
Jagan Teki’s Demystifying Linux MIPI-DSI Subsystem
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